

On Evaporation and Dissociation. Part III. A Study of the Thermal Properties of Ethyl Oxide

William Ramsay and Sydney Young

Phil. Trans. R. Soc. Lond. A 1887 178, 57-93

doi: 10.1098/rsta.1887.0003

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

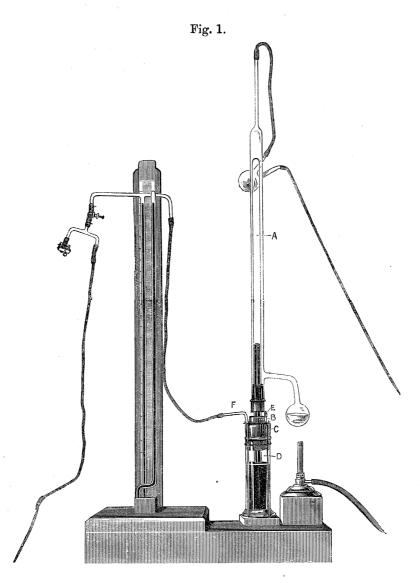
57

III. On Evaporation and Dissociation.—Part III. A Study of the Thermal Properties of Ethyl Oxide.

> By William Ramsay, Ph.D., and Sydney Young, D.Sc. Communicated by Professor G. G. Stokes, D.C.L., P.R.S.

> > Received April 23,-Read May 20, 1886.

[Plates 6-10.]


In a memoir published in the Royal Society's 'Philosophical Transactions,' 1886 (Part I.), p. 123, "On the Thermal Properties of Ethyl Alcohol," we gave the results of a research on the vapour-pressures of alcohol, the densities of its vapour—both unsaturated and saturated—and the expansion and compressibility of liquid alcohol at various temperatures; and from these data were deduced the amounts of heat required to vaporize alcohol at those temperatures. Our object in these researches has been to compare carefully the behaviour of stable with that of unstable bodies, and, if possible, to acquire some clear ideas of the nature of chemical combination. But, as the properties of stable bodies are still to a great extent unknown, we have deemed it advisable to extend our research with the view of investigating this relationship; and for that purpose we have made a similar series of measurements of the thermal constants of ethyl oxide $(C_2H_5)_2O$. The data, and the deductions from the data, are the subject of the following memoir.

Experiments on the vapour-pressure, vapour-density, expansion, and other properties of ether have been made by REGNAULT, KOPP, PIERRE, MENDELEJEFF, AVENARIUS, and others, and their results shall be quoted when necessary.

Preparation of Pure Ether.

A quantity of absolute alcohol was converted into ether by means of sulphuric acid in the usual way. The distillate was first shaken up with caustic soda, to remove sulphurous anhydride, and was then redistilled. In order to remove a great part of the alcohol in the distillate, it was allowed to stand over calcium chloride, and again distilled. It was then repeatedly shaken with water to remove the last traces of alcohol, and it was then again dried with calcium chloride and distilled. The distillate was cohobated with metallic sodium until gas ceased to be evolved; it was then distilled from the sodium, and left in contact with clean, fresh sodium for many It was again distilled, and was found to boil with absolute constancy at 34.72° at a pressure of 763.1 millims. The thermometer used was graduated in MDCCCLXXXVII.—A. 23.5.87

tenths of a degree, and had been frequently tested and indirectly compared with an air thermometer. In order to exclude water, the ether was preserved in a stoppered tube with a mercury joint above the stopper.

Apparatus employed.

Three different pieces of apparatus were employed in this research.

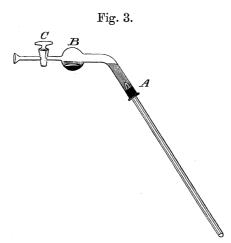
One for the determination of vapour-pressures at low temperatures. The apparatus has already been described in the 'Philosophical Transactions' for 1884, p. 37, and an improved form in the 'Journal of the Chemical Society' for 1885, p. 42. impossible to use an india-rubber joint in presence of ether, a tight glass stopcock, smeared with slightly deliquesced phosphoric anhydride, was substituted.

The densities of the saturated and unsaturated vapour at low temperatures were

determined by an apparatus modified from that devised by Professor Hofmann. The form adopted was simpler than that employed in the research on alcohol. graduated tube A (fig. 1) was completely filled with warm dry distilled mercury; the ether, contained in a small light bulb, was introduced; the tube was then inverted into a temporary mercury-trough B, on the top of a large india-rubber cork C, which closed the top of a large glass jar D, full of mercury, and communicating with the reservoir

Fig. 2.

by means of a hole through the cork. Through this hole the tube was inserted, and pushed down, until its extremity was distant from the bottom of the jar about 2 centims. A quantity of mercury was then forced out of the jar through the tube E, which did not dip so deeply into the mercury as the graduated tube. tube E was then permanently closed. The tube F, which just passed through the cork, was connected with a pump and gauge, by means of which the pressure on the surface of the mercury could be altered and read.


To find the weight of ether employed, the graduated tube was jacketed with the vapour of alcohol, boiling under atmospheric pressure. For lower temperatures the tube was surrounded with flowing water.

The constants at high temperatures were ascertained by help of the apparatus employed in our research on alcohol, which will now be described.

The body of the apparatus consists of a wrought-iron tube A (fig. 2), firmly fixed in a horizontal position by being clamped in a vice. As in Andrews's apparatus, one end is closed by a cap B, through which an iron screw passes, the joint being made tight by a packing of greased leather in which the screw C works, passing through the interior of an india-rubber cork, which closely fits the cap. On screwing on the cap, the india-rubber is compressed, so that a very high pressure can be withstood without The iron tube has no opening at the other end, but is provided with three vertical branches, D, E, and F, closed in a similar manner by iron caps, through The gauge G is intended for which the gauges and the experimental tube pass. registering high pressures, and H for low pressures. To the open end of G is sealed a glass reservoir, of known capacity, while H is a plain tube, constricted at one end. These, and also the experimental tube, which is also constricted at its open end, dip into clean, distilled mercury, filling the iron tube completely. The gauges are jacketed by narrow glass tubes, through which water flows; the temperature of the water was registered by a small thermometer, placed in the stream, immediately after passage through the gauges. It was found by experiment that, with a rapid current, the temperature did not rise sensibly during its passage. The experimental tube is fitted with a jacket J, in the bulb of which a liquid boiled under known pressure ('Chem. Soc. Journ.,'vol. 47, p. 640). The experimental tube passes through a perforated india-rubber cork, closing the jacket, and protected from the action of the condensed hot liquid by a layer of mercury K. The top of the jacket is furnished with a small condenser L, to prevent escape of vapour. The pressure under which the pure liquid was boiling was read by means of a gauge and barometer.

The experimental tube was filled with ether by fitting it, with help of a ring cut from india-rubber tube, into the end of the tube A (fig. 3). This tube is bent to an obtuse angle, and widened into a bulb at B. On the further side of B there is a tight stopcock C. Into the bulb is introduced some pure mercury and a quantity of the pure ether, much more than sufficient to fill the experimental tube. By warming the experimental tube some air is expelled; the ether in the bulb is then boiled on the surface of the mercury, the stopcock being open. When vapour freely escapes the stopcock is closed, and the tube is held in such a manner that ether covers the open end of the experimental tube. The latter is again warmed, and the ether, which enters on cooling, is boiled. The experimental tube, being at a higher temperature than the boiling-point of ether under the reduced pressure, liquid ether, trickling down into it, is at once gasified and carries with it all air, and a series of bubbles rapidly rises through the ether in the bulb. When it is judged that all air is expelled

the experimental tube is cooled, and ether rushes in to fill it. It is easy to make sure, by the absence of a bubble, of complete expulsion of air. The tube is then tilted, so that mercury covers the end of the experimental tube, and a portion of the latter is warmed. The ether boils off through the mercury, and, on cooling, its place is occupied by mercury. By tapping, the column of mercury may be made to descend to any desired point. When quite cold, the experimental tube is disconnected, placed in the iron cap, and gently warmed, so as to cause a globule of mercury to hang to its constricted open end. It is then plunged under the surface of the mercury in the branch of the iron tube, and the cap is screwed tight. From this description it will be noticed that all possibility of the presence of air in the liquid to be experimented on is completely excluded; and our results prove that this was the case, for the readings of vapour-pressure at different volumes of gas and liquid give, for the same temperature, absolutely identical results.

It was thus possible to alter volume by means of the screw; to read pressures accurately by the use of the high and low pressure gauges, the readings of which were compared when possible; and to secure constant known temperatures by means of the vapour-jacket.

EXPERIMENTAL RESULTS.

1. Vapour-pressures at Low Temperatures.

Calibration of Thermometer.—The thermometer employed was a new one by Negretti and Zambra, divided into tenths of a degree, and registering from -20° to $+50^{\circ}$. The zero-point at the atmospheric pressure was $+0.19^{\circ}$. The bulb was immersed in mercury, contained in a vessel from which air could be exhausted by means of a Carré's pump. Unless the bulb is dipped in mercury, the temperature it registers is altered by the cooling of the air by exhaustion, or heating by compression; the mercury serves to keep the temperature constant. It was found that the tempera-

ture was apparently lowered 0.25° for a fall of pressure of 700 millims. The thermometer was next tested by a few determinations of the vapour-pressure of water. water on the cotton-wool encasing the bulb having been frozen, pressure was raised to 6 millims., and the melting-point of ice was observed. The mercury stood constant for a long time at -0.11. An apparent fall of temperature, due to reduction of pressure, of $+0.19-(-0.11)=0.3^{\circ}$, had thus occurred for a fall of pressure of 754 millims., which agrees with sufficient accuracy with the former observation, 0.25°, This change of zero-point was considered to be proportional to the for 700 millims. pressure, and corrections introduced accordingly. A comparison of the vapourpressures of water by our method gave results coincident with those of Regnault up to 33°, and it was assumed that the graduation of the thermometer was equally regular below 0°.

Vapour-pressures at Low Temperatures.

Series I.

Pressure.	Temperature.	Pressure.	Temperature.
millims.	0	millims.	0
73.65	-17.73	141.0	-5.46
74.15	-17.68	152.7	-3.90
84.50	-15.30	153.85	-3.73
96.55	-12.85	168.9	-1.81
110.65	-10.33	184.05	-0.11
124.80	- 7.94	184.10	-0.07
139.85	- 5.65	186.05	+0.13
140.65	- 5.55	197.35	+1.42

Series II.

Pressure.	Temperature.	Pressure.	Temperature.
millims. 79·95 105·45 133·05 162·60 181·80	$\begin{array}{c} -16.24 \\ -11.23 \\ -6.74 \\ -2.71 \\ -0.33 \end{array}$	millims. 216·25 258·25 316·40 392·90 593·05	+ 3·37 7·33 11·96 17·19 27·64

The pressures for These results were plotted and a curve drawn through them. each 5° between -15° and +5°, read from the curve, are as follows:—

Temperature.	Pressure.
-15 -10 - 5 0 + 5	millims. 86·0 112·3 144·8 184·9 233·0

The pressure at 0° agrees very well with that given by Regnault, 184:39 millims. ('Mémoires de l'Académie,' vol. 26, 1862, p. 393); but at the other temperatures the

agreement is not nearly so close. These results will be considered subsequently.

2. Vapour-densities at Low Temperatures.

Weight of Ether taken.—The quantity of ether taken was not determined directly by weighing, but was calculated from vapour-density determinations at the boilingpoint of alcohol under atmospheric pressure.

> Series I.—Barometer, 763.1 millims. (reduced to 0°). Boiling-point of alcohol, 78.4°.

In each set of observations the volume was altered very slightly; in the first, for instance, it varied from 154.3 to 155.3 cub. centims., while the pressure varied from 75.45 to 74.75 millims. The number of readings and the mean values are given in every case.

Number of readings.	Pressure reduced to 0°, Mean.	Volume, Mean.	Pressure × Volume.	Vapour-density.
9 6 5 2 3	mms. 75·06 85·55 105·56 160·85 438·82	$\begin{array}{c} \text{c.cs.} \\ 154 \cdot 77 \\ 135 \cdot 15 \\ 110 \cdot 01 \\ 71 \cdot 85 \\ 25 \cdot 87 \end{array}$	$ \begin{array}{c} 11617 \\ 11562 \\ 11613 \\ 11557 \\ 11352 \end{array} $	Taken as normal, =37 37·13 37·80

The mean value of p.v. calculated from the first three sets of readings is 11599.5. Taking the normal vapour-density of ethyl oxide as 37.0, the weight is 0.0393 gram. The pressure of the saturated vapour at this temperature is nearly 3,000 mms.; and it will be noticed that the value of p.v. is constant, although the volume has been reduced from 3 to 2.

Vapour-density at 12.9°.—The densities of the unsaturated and saturated vapour were then determined at 12.9°, the temperature being maintained constant by means of running water. The data follow in order.

er e			·	
Number of readings.	Pressure reduced to 0°, Mean.	Volume, Mean.	Pressure × Volume.	Vapour density.
2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	mms. 54·07 72·90 118·20 138·25 138·70 170·30 207·18 263·45 309·68 325·00 330·00	c.es. 175·25 129·95 79·92 67·80 67·40 55·00 44·90 35·02 29·60 28·05 25·10	9476 9473 9447 9374 9348 9355 9302 9227 9166 9116	36·84 36·85 36·95 37·24 37·34 37·30 37·53 37·83 38·08 38·30

Vapour-pressure calculated, 330.48 mms.

3. Constants at High Temperatures.

For these experiments four different amounts of ether were employed. In the first case a large amount, A, was taken, and its weight calculated from its volume at known temperatures. During the early experiments a leakage took place, and, some ether being lost, the gauges had to be refilled. Measurements were again made to ascertain the weight of the remaining ether; this portion is alluded to as A'. The third amount, B, was too small to be accurately determined in this way, and was estimated by comparison of the volumes occupied by the two quantities under similar conditions of temperature and pressure. The fourth quantity, C, was still smaller, and its weight was deduced from comparison of its volumes with those of B at the same temperatures and pressures.

A. Results of experiments on large quantity of ether. Determination of weight. The mean of the determinations of the specific gravity of ether at 0° by Kopp, Pierre, Mendelejeff, and Perkin was taken. Their numbers were as follows:—

Kopp ('Liebig's	Annalen der Ch	nemie und Pharm	aci	e,' v	ol.	64	p.	21	4)	0.73658
PIERRE ('Annale	es de Chimie et	de Physique,' vo	l. 1	5,	р. З	325)	•	•	0.73581
Mendelejeff ('	Liebig's Annal	len der Chemie ı	ind	Pl	iar	ma	cie,	, v	ol.	
119, p. 9) .	• • • •			•	•	•	•		•	0.73644
PERKIN ('Chem.	Soc. Journ.,' v	rol. 45, p. 474)		-	•			•	•	0.7371
22	22	99	•			•		•	•	0.7352
										waste and the control of the control
		${ m Mean}$		٠				,		0.7362

Dr. Perkin's results were from comparisons of ether and water at 15° and at 25°; the former is 0.72088, and the latter 0.70991. They were reduced to 0° by means of Kopp's formula, with the above results.

The portion of ether A gave the following measurements:—

Temperature.	Volume.	Specific gravity.	Weight.
17.95 15.50 16.20	0·19589 0·19554 0·19571	0·71627 0·71902 0·71805	0.14031 0.14060 0.14053
	Mean weig	ght	0.14048

The volume tube was a new one, and was carefully calibrated by weighing with A low pressure and a high pressure gauge were employed. ossible, readings on both were taken. The manometers were calibrated by eighing with mercury, and contained air dried over phosphorus pentoxide. he following corrections for volume, pressure, and temperature were applied:—

For volume.—Meniscus of mercury and of liquid.

Expansion of glass by heat.

The expansion of the tube owing to internal pressure was not allowed for, as it would have been much within the errors of reading.

For pressure.—Meniscus of mercury.

Levels of mercury in volume tube and in pressure gauges.

Difference of temperature in water-jacket at time of filling and time of reading.

Deviation of air from Boyle's Law, as determined by Amagar ('Compt. Rend.,' vol. 99, 1884, p. 1153).

For temperature.—Reduction of the pressure under which the liquid boiled, as read on the gauge, to 0° (see 'Chem. Soc. Journ.,' vol. 47, 1885,

The temperatures are those of an air-thermometer.

	Pressure of alcohol.	Temperature of alcohol.	Volume of liquid.	Volume of 1 gramme.	Specific gravity.	Vapour- pressure.*	Mean.
A' (1)	mms. 133·7	° C. 40	c.es. 0·20220	c.cs. 1·4505	0.68943	mms. 921 920	mms.
(2)	172·2	45	0.20398	1.4632	0.68342	$ \begin{array}{c c} 922 \\ 922 \\ 1085 \\ 1085 \end{array} $	1085.5
(3)	220.0	50	0.20611	1.4785	0.67636	$ \begin{array}{c c} 1086 \\ 1086 \\ 1276 \\ 1276 \\ 1278 \end{array} $	1277

^{*} In this, and in all other cases, the vapour-pressures were determined at widely different volumes. MDCCCLXXXVII.—A.

66

PROFESSOR W. RAMSAY AND DR. S. YOUNG

Volume.	Volume of 1 gramme.	Pressure.
c.cs.	c.cs.	mms.
0.20576	1.4760	2,635
0.20472	1.4685	5,878
0.20401	1.4635	16,539
0.20365	1.4609	24.986
0.20296	1.4559	33,929

	Pressure	Temperature	Volume of	Volume of	Specific	Vapour-pressure.		Mean.
	of alcohol.	of alcohol.	liquid.	1 gramme.	gravity.	L. P. G.*	H. Р. G.*	mean.
(4)	mms. 278·6	° C. 55	e.es. 0·20753	c.cs. 1·4887	0.67172	mms. 1490 1488	mms.	mms.
(5)	350·3	60	0.20999	1:5063	0.66387	$1491 \ 1494 \ 1732 \ 1738 \ $	3	1734
(6)	437.0	65	0.21141	1.5165	0.65940	$ \begin{array}{c c} 1732 \\ 1736 \\ 2002 \\ 2003 \end{array} $	••	
(7)	541.2	70	0:21355	1.5319	0.65280	$\begin{bmatrix} 2003 \\ 2004 \\ 2007 \end{bmatrix}$	••	2004
						$ \begin{array}{c c} 2306 \\ 2305 \\ 2307 \end{array} $	• • :	2304
(8)	665.55	75	0.21556	1.5463	0.64671	$egin{array}{c} 2637 \ 2640 \ 2639 \ 2639 \ \end{array}$	· . • •	2639
أوج القامدات	(Chlorobenzene.)	المارين والمارو	311.)	jera goga	,	2000		
(9)	144.8	80	0;21848	1.5673	0.63806	$\left\{ \begin{array}{c} 2976 \\ 2976 \\ 2978 \end{array} \right\}$	· · ·	2977
(10)	174.25	85	0.21984	1.5770	0.63412	$\begin{vmatrix} 3393 \\ 3388 \\ 3392 \end{vmatrix}$	• •	3389
(11)	208.35	90	0:22378	1.6053	0.62293	3385 J 3829 J 3835 J 3829 J	••	3831
(12)	247.7	95	0.22590	1.6205	0.61709	3832 J 4326	4322 4325	4326
(13)	292.75	100	0.22840	1.6384	0.61034	4849 4855	$ \begin{array}{c c} 4327 \\ 4330 \\ 4855 \\ 4853 \end{array} $	y i
5						4871 4852	$\left\{ \begin{array}{c} 4860 \\ 4852 \end{array} \right\}$	4857

^{*} Low-pressure gauge and high-pressure gauge.

		*
Volume.	Volume of 1 gramme.	Pressure.
C.CS.	c.es,	mms.
0.22770	1 6334	7,208
0.22700	1.6284	12,955
0.22595	1.6208	19,515
0.22420	1.6083	27,072
0.22246	1.5958	44.154

	Pressure of	Temperature of chloro-	Volume of	Volume of	f Specific	Vapour-pressure.*		Mean.
	chlorobenzene.	benzene.	liquid.	1 gramme.	gravity.	L. P. G.	L. P. G. H. P. G.	Bicail.
(7.4)	mms.	° C.	c.cs.	c.cs.	0.00200	mms.	mms.	mms.
(14)	344.15	105	0.23121	1.6586	0.60292	5441	F 4 4 0 5 1	
						5445	5443	
						5438	5440	W 1 19
* * * * *						5430	5439	5441
						5458	5439	
/4 55	100 22	770	0.00480	1 2002		5441	ا ل 5437	
(15)	402.55	110	0.23456	1.6826	0.59431	6100		
		1				6078	6083 J	
						6088	6088	6082
						6063	6063	0002
			•			6086	6086]	
(16)	468.5	115	0.23825	1.7091	0.58511	••	6773	
							6778	6775
		•			41.		6772	0110
					•		6779	
(17)	542.8	120	0.24215	1.7370	0.57569		7496)	
						:	7501	7513
						:	7520 }	1919
		A Section Assets					7535	
(18)	626.15	125	0.24566	1.7623	0.56745	1	8274)	
	1						8307	8313
							8327 }	9919
							8344	
(19)	718.95	130	0.24987	1.7925	0.55792		9156	
	4					1.000	9176	0100
				1			9216	9188
							9203	
A (20)	144.8	80	0.22022	1.5676	0.63790	2965	1 1	
					100	2976	} 4	2971
1.7						2973		
	(Bromobenzene.)				· ·			
								:
(21)	372.65	130	0.25213	1.7948	0.55715	••	9162	
* / /	1 1 1 1 1 1 1						91357	į
	Harris Street						9131	040-
							9134	9131
	1						9125	

^{*} Under this heading are occasionally given the pressures under which the liquid was measured. It will be seen that in no case does this pressure differ so much from the vapour-pressure as to sensibly reduce the volume of the liquid.

	Pressure of	Temperature	Volume of	Volume of	Specific	Vapour	-pressure.	Mean.
	bromobenzene.	benzene.	liquid.	1 gramme.	gravity.	L. P. G.	Н. Р. G.	mean.
(22)	mms. 430·75	° C. 135	e.es. 0·25585	c.es. 1·8213	0.54906	mms.	$ \begin{array}{c} \text{mms.} \\ 10,222 \\ 10,056 \\ 10,085 \\ 10,086 \end{array} $	mms.
(23)	495.8	140	0.26077	1.8563	0.53870		$ \begin{array}{c} 10,081 \\ 11,087 \\ 11,048 \\ 11,058 \\ 11,039 \end{array} $	11,051
(24)	568:35	145	0.26651	1.8971	0.52712		$ \begin{array}{c} 11,060 \\ 12,260 \\ 12,113 \\ 12,128 \\ 12,115 \end{array} $	12,122
(25)	649.05	150	0.27133	1.9314	0.51774		$ \begin{array}{c} 12,133 \\ 13,348 \\ 13,260 \\ 13,228 \\ 13,234 \\ 13,242 \end{array} $	13,241

Compressibilities of Liquid,

Volume.	Volume of 1 gramme.	Pressure.
0.cs.	c.cs.	mms.
0.26993	1·9215	13,818
0.26818	1·9091	18,258
0.26644	1·8967	20,228
0.26574	1·8917	22,705

The density of the saturated vapour was determined at this temperature.

Volume of vapour.	Volume of liquid.	Weight of liquid.	Weight of vapour.	Weight of 1 c.c. vapour.	Mean.	Volume of 1 gramme vapour.	Vapour- density.
0·37322 0·51918 0·75893 0·91823	0·23042 0·21594 0·19121 0·17377	0·11930 0·11180 0·09900 0·08997	0·02118 0·02868 0·04148 0·05051	$ \begin{array}{c} 0.05675 \\ 0.05224 \\ 0.05466 \\ 0.05501 \end{array} $	0.05541	18.047	56.22

	Pressure of aniline.	Temperature of aniline.	Volume of liquid.	Volume of 1 gramme.	Specific gravity.	Vapour- pressure.	Mean.
(26)	mms. 283·7	° C. 150	0.cs. 0.27133	c.cs. 1.9315	0.51774	mms. 13,491 13,347 13,291	mms,
(O h)	991 H			1.0500	0 10100	$egin{array}{c c} 13,290 \\ 13,259 \\ 13,272 \\ \end{array}$	13,292
(27)	331.7	155	0.27766	1.9766	0.50593	14,818 14,515 14,532 14,521	14,514
(28)	3 86·0	160	0.28433	2.0240	0.49406	14,488 J 16,038 15,776 15,768	15,778
(29)	447·1	165	0.29170	2.0765	0.48158	$ \begin{array}{c c} 15,769 \\ 15,799 \\ 17,335 \\ 17,265 \\ 17,209 \end{array} $	
(30)	515.6	170	0.30186	2.1488	0.46538	$egin{array}{c} 17,204 \\ 17,124 \\ 18,860 \\ \end{array}$	17,201
(01)	M 02.04		0.01116	2 2225	0.44085	18,743 18,666 18,668 18,597	18,671
(31)	592.05	175	0.31443	2.2383	0.44677	$\begin{bmatrix} 20,238 \\ 20,178 \\ 20,181 \\ 20,210 \\ 20,228 \end{bmatrix}$	20,199

Volume.	Volume of 1 gramme.	Pressure.
c.cs.	c.cs.	mms.
$0.31199 \\ 0.30850$	$2.2209 \\ 2.1961$	$21,802 \ 22,556$
0.30501	2.1712	23,767
0.30152	2.1464	$25,\!496$
$0.29454 \\ 0.29105$	$2.0967 \\ 2.0719$	$30,\!420 \\ 32,\!780$
0.28756	2.0470	36,362
0.28407	2.0222	40,177
•		

The density of the vapour was here determined.

Volume of vapour.	Volume of liquid.	Weight of liquid.	Weight of vapour.	Weight of 1 c.c. vapour.	Mean.	Volume of 1 gramme vapour.	Vapour- density.
0·31360 0·58620 0·86187 1·04445	0·24414 0·18492 0·12462 0·08340	0·10907 0·08261 0·05568 0·03726	0·03141 0·05787 0·08480 0·10322	$ \begin{array}{c} 0.10016 \\ 0.09872 \\ 0.09839 \\ 0.09883 \end{array} $	0.09899	c.es.	68·23

	Pressure of aniline.	Temperature of aniline.	Volume of liquid.	Volume of 1 gramme.	Specific gravity.	Vapour- pressure.	Mean.
(32)	mms. 677·15	° C. 180	c.cs. 0·32943	c.cs. 2·3451	0.42642	mms. 22,131 21,804)	mms.
						$ \begin{array}{c c} 21,745 \\ 21,776 \\ 21,821 \\ 21,807 \end{array} $	21,793
	(Methyl salicylate)			*			
(33)	249:35	180	0.32943	2.3451	0.42642	21,942 21,820)	
(34)	287.8	185	0.34936	2.4869	0.40211	$\left \begin{array}{c} 21,804 \\ 21,645 \\ 23,746 \end{array}\right $	21,756
	G	_50			· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{c} 23,691 \\ 23,688 \\ 23,695 \end{array} $	23,691

Volume. Volume	f 1 gramme. Pressure.
$\begin{array}{c cccc} 0.33648 & 2 \\ 0.33299 & 2 \\ 0.32950 & 2 \\ 0.32602 & 2 \\ 0.32253 & 2 \\ 0.31905 & 2 \\ 0.31208 & 2 \\ 0.30860 & 2 \\ 0.30510 & 2 \\ 0.30161 & 2 \end{array}$	mms. 3952 25,243 3704 26,091 3456 26,838 3208 27,746 2959 28,720 2712 29,924 2216 32,640 11719 36,355 11470 38,842 11221 41,820

VAPOUR-DENSITY DETERMINATIONS.

Saturated.

Volume of vapour.	Volume of liquid.	Weight of liquid.	Weight of vapour.	Weight of 1 c.c. vapour.	Mean.	Volume of 1 gramme vapour.	Vapour- density.
0·31308 0·62739 0·89820	0.24482 0.14396 0.05282	0·09844 0·05788 0·02124	0·04204 0·08260 0·11924	$ \begin{array}{c} 0.13428 \\ 0.13166 \\ 0.13276 \end{array} $	0·13290	c.cs. 7·5245	79·85

Unsaturated.

Volume of vapour.	Pressure.	Weight of 1 c.c. vapour.	Volume of 1 gramme vapour.	Vapour-density.
1·1106	23,408	0·12649	7·9059	76·91
1·1990	22,947	0·11716	8·5352	72·67

	Pressure of methyl salicylate.	Temperature of methyl salicylate.	Volume of liquid.	Volume of 1 gramme.	Specific gravity.	Vapour- pressure.	Mean.
(35)	mms. 330·85	° C. 190	c.cs. 0·38325	c.cs. 2·7282	0.36654	mms. 25,645 25,514 25,518 25,558	mms. 25,530

Volume.	Volume of 1 gramme.	Pressure.
c.cs.	c.cs.	mms.
0.37836	2.6934	25,781
0.37138	2.6437	26,034
0.36440	2.5940	26,448
0.35743	2.5444	27,173
0.34696	2.4699	28,535
0.32953	2.3458	32,351
0.31908	2.2714	35,522
0.31211	2.2218	38,705
0.31211	2.2218	38,705

VAPOUR-DENSITY DETERMINATIONS.

Saturated.

Volume of vapour.	Volume of liquid.	Weight of liquid.	Weight of vapour.	Weight of 1 c.c. vapour.	Mean.	Volume of 1 gramme vapour.	Vapour- density.
0·24674 0·44219 0·69501	0·27581 0·18704 0·07641	0·10110 0·06856 0·02801	0·03938 0·07192 0·11247	$ \begin{array}{c} 0.15960 \\ 0.16264 \\ 0.16183 \end{array} $	0.16136	6·1973	91.44

Unsaturated.

Volume of vapour.	olume of vapour. Pressure.		Volume of 1 gramme vapour.	Vapour-density.
0·91519	25,331	0·15350	6·5148	87·19
0·98687	25,107	0·14235	7·0251	81·58
1·0578	24,705	0·13280	7·5302	77·35
1·1991	23,848	0·11715	8·5359	70·69

•	Pressure of methyl salicylate.	Temperature of methyl salicylate.	Volume of liquid.	Volume of 1 gramme.	Specific gravity.	Vapour- pressure.	Mean.
(36)	mms. 349·45	°C. 192	c.cs. 0·40637	c.cs. 2·8928	0.34566	$ \begin{array}{c} \text{mms.} \\ 26,482 \\ 26,304 \\ 26,324 \\ 26,354 \end{array} $	mms. 26,327

Volume.	Volume of 1 gramme.	Pressure.
0.40287 0.39589 0.38888 0.38189 0.37142 0.36444 0.35397 0.34700 0.33655 0.32957 0.31912 0.31215	e.cs. 2·8678 2·8181 2·7683 2·7185 2·6440 2·5943 2·5198 2·4701 2·3957 2·3461 2·2716 2·2220	mms. 26,482 26,515 26,786 27,066 27,580 28,236 29,441 30,400 32,518 34,227 38,474 41,819

VAPOUR-DENSITY DETERMINATIONS.

Saturated.

Volume of vapour.	Volume of liquid.	Weight of liquid.	Weight of vapour.	Weight of 1 c.c. vapour.	Mean.	Volume of 1 gramme.	Vapour- density.
0·32029 0·47047 0·69794	0·23773 0·15523 0·03801	0·08218 0·05366 0·01314	0·05830 0·08682 0·12734	$ \begin{array}{c} 0.18203 \\ 0.18314 \\ 0.18245 \end{array} $	0.18254	e.cs. 5·4782	100.20

Unsaturated.

Volume of vapour.	Pressure.	Weight of 1 c.c. vapour.	Volume of 1 gramme.	Vapour- density.
0·91529 1·05800 1·19930	25,842 25,172 24,219	0·15348 0·13278 0·11714	c.cs. 6·5155 7·5311 8·5369	85·83 76·23 69·89

	Pressure of methyl salicylate.	Temperature of methyl salicylate.	Volume of liquid.	Volume of 1 gramme.	Specific gravity.	Vapour- pressure.	Mean.
(37)	mms. 359·05	° C. 193	c.cs. 0·42563	e.es. 3·0298	0.33006	$\begin{array}{c} \text{mms.} \\ 26,851 \\ 26,787 \\ 26,797 \end{array}$	mms. 26,792

VAPOUR-DENSITY DETERMINATIONS.

Saturated.

Volume of vapour.	Volume of liquid.	Weight of liquid.	Weight of vapour.	Weight of 1 c.c. vapour.	Mean.	Volume of 1 gramme.	Vapour- density.
0·43540 0·51645	0·15824 0·11285	0·05223 0·03725	0·08825 0·10323	0·20269 0·19956 }	0.20112	c.cs. 4·9722	108.72

 \mathbf{L}

74

PROFESSOR W. RAMSAY AND DR. S. YOUNG

(38.) Apparent Critical Point. $T = 193.8^{\circ}$ (Methyl salicylate).

	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.*	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
	c.cs. 1·1886 1·1320 1·0580 0·98082 0·89363 0·75374 0·70044 0·62930	c.cs. 8·4612 8·0582 7·5315 6·9820 6·3614 5·3655 4·9976 4·4797	mms, 24,466 24,913 25,372 25,827 26,316 26,809 27,044 27,050	70·08 72·26 75·92 80·45 86·66 100·85 107·34 119·72	c.cs, 0·48711 0·43616 0·41475 0·38714 0·37841 0·35711 0·33235 0·32103	c.cs. 3·4675 3·1047 2·9524 2·7559 2·6937 2·5421 2·3659 2·2853	mms. 27,125 27,279 27,273 27,842 28,443 30,407 34,384 39,579	
-	0.55802	3.9723	27,079	• •				

(39.) $T = 195^{\circ}$ (Methyl salicylate).

Volume,	Volume o' 1 gramme.	Pressure.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
c.cs. 1·1992 1·0580 0·95122	c.cs. 8·5373 7·5315 6·7713	mms. 24,461 25,662 26,386	69·08 75·25 81·41	0.48711 0.45192 0.41686	c.cs. 3·4675 3·2170 2·9674	mms. 27,708 27,816 28,112	• •
$\begin{array}{c} 0.84318 \\ 0.73595 \\ 0.69230 \\ 0.55802 \end{array}$	6·0022 5·2389 4·4797 3·9723	26,947 27,342 27,569 27,605	89·92 101·54 117·77	$\begin{array}{c} 0.38189 \\ 0.36585 \\ 0.34142 \\ 0.32504 \end{array}$	2·7185 2·6042 2·4304 2·3138	29,097 30,372 34,346 39,535	

(40.) $T = 197^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
c.cs. 1·1994 1·0581 0·95130 0·84326 0·73601 0·62935 0·63807	c.cs. 8·5379 7·5322 6·7719 6·0027 5·2393 4·4800 3·9727	mms. 25,116 26,264 27,027 27,732 28,059 28,459 28,495	68·12 73·84 79·81 87·75 99·36 114·57	0.48716 0.45196 0.41690 0.38941 0.38543 0.34947 0.33065	c.cs. 3·4679 3·2173 2·9677 2·8432 2·7311 2·4877 2·3538	mms. 28,538 28,724 29,289 29,679 30,363 34,327 39,510	

^{*} As it is uncertain whether the substance is a vapour, this term must be accepted with an extended meaning.

(41.) $T = 200^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
c.cs. 1·1995 1·0582 0·95137 0·84332 0·73607 0·62941	6.cs. 8·5387 7·5329 6·7723 6·0032 5·2398 4·4804	mms. 25,545 26,740 27,643 28,511 29,108 29,663	67·39 72·98 78·52 85·89 96·38 110·60	0.cs. 0.55811 0.48720 0.45199 0.41693 0.37254 0.34008	c.cs. 3·9729 3·4682 3·2175 2·9679 2·6519 2·4209	mms. 29,847 30,381 30,725 31,307 34,318 39,500	123.97

(42.) $T = 205^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
c.cs. 1·1996 1·0583 0·95148 0·84341 0·73616 0·62948	c.cs. 8·5394 7·5336 6·7732 6·0028 5·2403 4·4809	mms. 26,354 27,624 28,664 29,655 30,484 31,366	66·01 71·38 76·52 83·44 92·99 105·69	c.cs. 0·55817 0·48725 0·45204 0·41698 0·38200 0·34710	3.9734 3.4685 3.2179 2.9682 2.7193 2.4708	mms. 31,873 32,623 33,133 34,334 36,634 42,731	117:30

(43.) $T = 210^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
c.cs. 1·1997 1·0584 0·95159 0·84351 0·73624 0·62955	c.cs. 8·5400 7·5343 6·7739 6·0045 5·2409 4·4815	mms. 27,161 28,579 29,784 30,833 32,000 33,182	64·71 69·71 74·40 81·08 89·50 100·94	0.c.cs. 0.55824 0.48731 0.45210 0.41702 0.38204	3.9738 3.4689 3.2183 2.9686 2.7196	mms. 34,022 35,230 36,242 37,696 40,743	108:50

(44.) $T = 223^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Vapour- density.
c.cs. 1·2002 1·0588 0·95196 0·84304 0·73653 0·62980	6.cs. 8·5436 7·5371 6·7766 6·0069 5·2430 4·4832	mms. 29,231 30,954 32,426 34,067 35,591 37,493	61·72 66·07 70·15 75·33 82·61 91·71	0.cs. 0.55846 0.52302 0.48749 0.45226 0.41719	3.9754 3.7231 3.4702 3.2194 2.9698	mms. 39,040 40,100 41,090 42,837 45,819	99·32 103·25 108·10 111·77 113·28

B. Weight.—The weight of portion B was ascertained by comparisons of its volume with that of A at the same temperatures and pressures. As the real pressures were in no cases the same for both, it was necessary to construct curves showing the relation of the pressures of A to its volume at constant temperatures, and to read off the volumes at the required pressures. The mean of twelve observations at various temperatures and pressures gave the number

0.01227 gramme.

(45.)
$$T = 50^{\circ}$$
 (Alcohol).

Vapour-pressure.	Mean.
$ \begin{array}{c} \text{mms.} \\ 1273 \\ 1275 \\ 1277 \\ 1275 \end{array} $	mms.

(46.)
$$T = 75^{\circ}$$
 (Alcohol).

Vapour-pressure.	Mean.
$\begin{array}{c} \text{mms.} \\ 2638 \\ 2637 \end{array} \}$	mms. 2637·5

(47.) $T = 100^{\circ}$ (Chlorobenzene).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
0.cs. 1·1610 1·0906 1·0201 0·94895 0·87710 0·80529 0·73419 0·66325 1·1964 1·0554 0·91310 0·84116	6.cs. 94·63 88·89 83·14 77·34 71·48 65·63 59·84 56·95 54·06 97·51 86·02 74·42 68·56	mms. 2978 3150 3334 3546 3818 4099 4432 4636 4815 2893 3243 3668 3946	3458 3435 3401 3365 3350 3301 3254 3239 3194 3461 3423 3349 3319	41·14 41·40 41·82 42·27 42·46 43·09 43·71 43·91 44·54 41·09 41·55 42·47 42·88	0.ccs. 0.80529 0.76967 0.73419 0.69876 0.68101 0.66325	c.cs. 65·63 62·73 59·84 56·95 55·50 54·06	mms. 4104 4265 4436 4618 4720 4820 L.P.G. H.P.G. 4865 4857 4868 4861 4841 4848 4851 4853 4852 4844 4855 4847	3305 3283 3257 3227 3214 3197 Mean 4853	43·04 43·33 43·67 44·08 44·25 44·49

(48.) $T = 130^{\circ}$ (Chlorobenzene).

Volume.	Volume of 1 gramme.	Pressure. H.P.G.	P. V.	Vapour- density.	Vapour- pressure. H.P.G.	Mean.
c.cs. 0·34641 0·34293 0·33945	28·23 27·95 27·66	mms. 8975 9038 9097	3109 3099 3088 	49·43 49·58 49·77	mms. 9114 9127 9136 9136 9136 9151	9133

(49.) $T = 150^{\circ}$ (Aniline).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs.	c.cs.	mms.			c.cs.	c.cs.	mms.		
1.1979	97.63	3375	4043	39.90	0.38146	31.09	9,066	3458	46.64
1.1272	91.87	3564	4017	40.15	0.34661	28.25	9,809	34 00	47.44
1.0568	86.13	3783	3998	40.35	0.31180	25.41	10,581	3299	48.89
0.98590	80.35	4027	3970	40.63	0.29436	23.99	11,019	3244	49.73
0.91430	74.51	4304	3935	40.99	0.27692	22.57 .	11,500	3185	50.65
0.84223	68.64	4561	3917	41.18	0.25946	21.15	11,998	3113	51.82
0.77064	62.81	5034	3879	41.58	0.24199	19.72	12,570	3042	53.03
0.69965	57.02	5481	3835	42.06	0.22449	18.30	13,204	2964	54.42
0.62860	51.23	6024	3787	42.60			13,265		
0.55739	45.43	6674	3720	43.36			13,289	Mean	
0.48657	39.66	7484	3641	44:30			13,284	13,283	
0.41640	33.94	8497	3538	45.59		•••	13,294		

(50.) $T = 175^{\circ}$ (Aniline).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs.	c.cs.	mms.			c.cs.	c.cs.	mms.		
1.19860	97.69	3589	4302	39.71	0.38170	31.11	9,906	3781	45.18
1.12790	91.93	3803	4290	39.83	0.34683	28.27	10,715	3716	45.97
1.05740	86.18	4035	4267	40.04	0.31199	25.43	11,673	3642	46.91
0.98649	80.40	4307	4249	40.21	0.27709	22.58	12,730	3527	48.43
0.91483	74.56	4626	4232	40.37	0.24214	19.73	14,021	3395	50.32
0.84276	68.69	4987	4203	40.65	0.22463	18.31	14,713	3305	51.69
0.77111	62.85	5396	4161	41.06	0.20712	16.88	15,531	3217	53.11
0.70008	57.06	5903	4133	41.34	0.18958	15.45	16,379	3105	55.02
0.62900	51.26	6485	4079	41.88	0.17204	14.02	17,304	2977	57:38
0.55774	45.46	7208	4020	42.49	0.15447	12.59	18,388	2840	60.14
0.48687	39.68	8065	3927	43.51	0.13690	11.16	19,354	2650	64:47
0.41665	33.96	9248	3853	44.34			,		
				1101					·

(51.) $T = 185^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	.P. V.	Vapour- density.
0.cs. 1·1990 1·1283 1·0577 0·91510 0·73580 0·55790 0·38181	0.cs. 97·72 91·95 86·21 74·58 59·97 45·47 31·12	mms. 3,692 3,915 4,159 4,755 5,811 7,434 10,284	4427 4417 4399 4351 4276 4147 3927	39·45 39·54 39·70 40·14 40·85 42·11 44·48	0.cs. 0·31208 0·24221 0·20718 0·17209 0·13694 0·11934 0·10174	25·43 19·74 16·89 14·03 11·16 9·726 8·292	mms. 12,106 14,641 16,290 18,324 20,667 21,893 22,984	3778 3546 3375 3153 2830 2613 2338	46·23 49·25 51·75 55·38 61·71 66·85 94·69

Vapour-pressure = $\frac{23,522}{23,518}$ $\}$ 23,520

(52.) $T = 190^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
1.0578 0.91520 0.73590 0.55790 0.38185 0.31211 0.24223	c.cs. 86·21 74·59 59·97 45·47 31·12 25·44 19·74	mms. 4,210 4,828 5,902 7,549 10,455 12,335 14,930	4453 4419 4343 4212 3992 3850 3616	39·64 39·96 40·65 41·92 44·23 45·86 48·82	0.cs. 0·20720 0·17211 0·13696 0·11935 0·10174 0·08411	c.cs. 16·89 14·03 11·16 9·727 8·292 6·855	mms. 16,650 18,772 21,288 22,663 24,033 25,126	3450 3231 2916 2705 2445 2113	51·18 54·65 60·56 65·27 72·20 83·54

Vapour-pressure = 25,462.

(53.) $T = 192^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs. 1·0580 0·91530 0·73600 0·55800 0·38189 0·31215 0·24226	c.cs. 86·42 74·60 59·98 45·48 31·12 25·44 19·74	mms. 4,230 4,847 5,930 7,590 10,544 12,428 15,032	4475 4436 4364 4235 4027 3879 3642	39·62 39·97 40·63 41·86 44·03 45·71 48·69	0.cs. 0.20723 0.17213 0.13697 0.11937 0.10176 0.08412	c.cs. 16·89 14·03 11·16 9·729 8·293 6·856	mms. 16,774 18,909 21,448 22,848 24,319 25,641	3476 3255 2938 2727 2475 2157	51·01 54·48 60·36 65·02 71·65 82·21

Vapour-pressure = 26,342.

(54.) $T = 193^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	Р. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs. 1·0580 0·91530 0·73600 0·55800 0·38189 0·31215 0·24226 0·20723	c.cs. 86·42 74·60 59·98 45·48 31·12 25·44 19·74 16·89	mms. 4,244 4,859 5,941 7,618 10,577 12,462 15,115 16,883	4490 4447 4372 4251 4239 3890 3662 3499	39·58 39·96 40·64 41·80 43·99 45·68 48·53 50·79	0.cs. 0·17213 0·13697 0·11937 0·10176 0·08412 0·06648 0·06294	c.cs. 14·03 11·16 9·729 8·293 6·856 5·418 5·130	mms. 19,035 21,660 23,091 24,498 25,878 26,659 26,764	3276 2967 2756 2493 2177 1772 1685	54·24 59·89 64·47 71·28 81·63 100·26 105·48

Vapour-pressure = 26,816.

(55.) Apparent Critical Point. $T = 193.8^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs. 1·0580 0·91530 0·73600 0·55800 0·38189 0·31215 0·24226 0·20723	6.cs. 86·42 74·60 59·98 45·48 31·12 25·44 19·74 16·89	mms. 4,252 4,867 5,951 7,627 10,587 12,499 15,152 16,944	4498 4455 4380 4256 4043 3902 3671 3511	39·57 39·96 40·64 41·82 44·03 45·62 48·49 50·69	0.cs. 0·17213 0·13697 0·11937 0·10176 0·08412 0·06648 0·05941 0·05235	c.cs. 14·03 11·16 9·729 8·293 6·856 5·418 4·842 4·267	mms. 19,100 21,731 23,211 24,682 25,980 26,984 27,039 27,091	3288 2977 2771 2512 2185 1794 1607 1418	54·14 59·80 64·25 70·87 81·45 99·22 110·80 125·51

(56.) $T = 195^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	Р. V.	Vapour- density.
c.cs.	c.cs.	mms.			c.cs.	c.cs.	mms.		
1.1993	97.74	3,797	4554	39.19	0.20723	16.89	17,105	3545	50.35
1.1258	91.97	4,007	$\boldsymbol{4522}$	39 47	0.17213	14.03	19,213	3307	53.96
1.0580	86.42	4,260	4507	39.60	0.13697	11.16	21,906	3001	59.48
0.9153	74.60	4,884	4470	39.92	0.11937	9.729	23,335	2785	64.07
0.7360	59.98	5,969	4393	40.62	0.10176	8.293	24,956	2539	70.28
0.5580	45.48	7,651	4269	41.80	0.08412	6.856	26,400	2221	80.36
0.38189	31.12	10,631	4060	43.96	0.06648	5.418	27,435	1824	97.85
0.31215	25.54	12,560	3921	45.52	0.05235	4.267	27,601	1445	123.51
0.24226	19.74	15,241	3692	48.33			,	-	

(57.) $T = 223.25^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
0.cs 1·2001 1·1293 1·0587 0·98771 0·91597 0·73650 0·55843 0·38217 0·31238	c.cs. 97·81 92·04 86·29 80·50 74·65 60·02 45·51 31·15 25·46	mms. 4,044 4,289 4,556 4,870 5,232 6,412 8,260 11,567 13,698	4853 4844 4824 4810 4792 4722 4613 4421 4279	38·99 39·07 39·23 39·34 39·49 40·07 41·02 42·81 44·22	0.08. 0.242444 0.20738 0.17225 0.13707 0.11945 0.10183 0.08418 0.06653	c.cs. 19·76 16·90 14·04 11·17 9·736 8·299 6·861 5·422	mms. 16,784 18,918 21,669 24,991 27,111 29,680 32,289 35,623	4069 3923 3733 3426 3239 3022 2718 2370	46·50 48·26 50·70 55·24 58·43 62·61 69·62 79·84

C. The weight of C was deduced by comparison of the volumes with those of B at the same temperatures and pressures. The mean value was found to be

0.0035982 gramme.

(58.)
$$T = 50^{\circ}$$
 (Alcohol).

Volume.	Volume of 1 gra vme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
1.0887 1.0183 0.98965 0.87533 0.80384	263·3 243·3 223·4	mms. 855 909 974 1051 1139	930·8 925·6 922·6 921·1 916·4	38·80 39·02 39·15 39·25 39·45	0.73288 0.71519 0.70458 0.69751	203·7 198·7 195·8 193·8	mms. 1240 1263 1272 1273	909·5 904·0 896·9 888·6	39·75 39·99 40·30 40·68

(59.) $T = 195^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P.V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs. 1·1285 1·0580 0·98700 0·91530 0·73595 0·55800 0·38189 0·34700 0·31215	c.cs. 313·6 294·0 274·3 254·4 204·5 155·1 106·13 96·44 86·75	mms. 1224 1301 1391 1503 1858 2431 3480 3820 4219	1381 1376 1373 1376 1367 1357 1329 1319 1317	37·89 38·02 38·12 38·04 38·27 38·58 39·38 39·68 39·74	c.cs. 0·27723 0·24226 0·20723 0·17213 0·13697 0·11937 0·10176 0·08412 0·06648	c.cs. 77·05 67·33 57·59 47·84 38·07 33·17 28·28 23·38 18·48	mms. 4,718 5,356 6,166 7,312 8,972 10,108 11,584 13,450 16,096	1308 1298 1278 1269 1229 1207 1179 1131 1070	40·01 40·33 40·96 41·58 42·59 43·38 44·40 46·26 48·91

(60.) $T = 222.85^{\circ}$ (Methyl salicylate).

Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.	Volume.	Volume of 1 gramme.	Pressure.	P. V.	Vapour- density.
c.cs. 1·2001 1·1627 1·1293	c.cs. 333·5 323·7 313·8	mms. 1231 1268 1307	1477·3 1476·9 1476·0	37·53 37·55 37·57	c.cs. 1·0905 1·0587	c.cs. 303·1 294·2	mms. 1354 1393	1476·6 1474·8	37·55 37·60

Reduction and Arrangement of Results.

I. Vapour-pressures.—The vapour-pressures experimentally observed and calculated are given in the annexed Table, as well as those calculated by Regnault from his observations.

		Vapour-pressure	es.			Vapour-pressure	es.
Temperature.	Observed.	Calculated.	REGNAULT.	Temperature.	Observed.	Calculated.	REGNAULT.
-20 -15 -10 - 5 0 5 10 15 20 25 30* 40 45 50 55 60 65 70 75 80 85 90	86·00 112·3 144·8 184·9 233·0 290·8 360·0 439·8 534·8 771·8 921·0 1085·5 1276 1491 1734 2004 2304 2638 2974 3389 3831	62·99 85·22 111·81 144·69 184·9 233·52 291·78 360·93 442·36 537·51 647·93 775·25 921·18 1087·53 1276·11 1488·97 1728·13 1995·71 2293·91 2625·04 2991·40 3395·46 3839·71	68·90 89·31 114·72 146·08 184·39 230·89 286·83 353·62 432·78 525·93 634·80 761·20 907·04 1074·15 1264·83 1481·06 1725·01 1998·87 2304·90 2645·41 3022·79 3439·53 3898·26	95 100 105 110 115 120 125 130 135 140 145 150 165 170 175 180 185 190 192	4326 4855 5441 6082 6775 7513 8313 9155 10077 11051 12122 13262 14514 15778 17201 18671 20189 21775 23623 25513 26331 26800	4326·69 4859·01 5439·35 6070·38 6754·93 7495·73 8295·62 9157·42 10084·0 11078·2 12142·9 13281·0 14495·1 15788·1 17162·9 18622·2 20168·4 21804·3 23532·4 25355·1 26111·2 26495·0	4401·81 4953·30 5556·23 6214·63 6933·26 7719·20

^{*} The results given up to 30°, as observed, were read from the curve mentioned on p. 62.

[†] This result was calculated from the boiling-point under atmospheric pressure. The remainder are the means of actual observations.

The formula which Regnault employed in his extensive research on vapourpressures was suggested by Biot. It is

$$\log p = a + b\alpha^t + c\beta^t.$$

The concordance between the found and calculated pressures through a range of temperatures so great as from -20° to 180° shows how well this formula interprets The constants employed were calculated from the observations at 0°, 45°, 90°, 135°, and 180°. The numbers directly read were, however, not taken; but small portions of the curve about these points were previously smoothed by means of the simpler formula

$$\log p = a + b\alpha^t.$$

The constants for the larger formula are

$$a = 5.9834771,$$
 $\log \alpha = 1.99827459,$ $\log b = 0.5240258,$ $\log c = \overline{1}.5733238,$ $\log \beta = \overline{1}.99130336;$

b and c are both negative.

The greatest difference, calculated as temperature between the found and calculated results between -15° and 180° , is 0.2° ; but above 180° the difference increases gradually, amounting to 0.8° at 193°; but, indeed, it is doubtful whether any formula can be expected to hold in the immediate neighbourhood of the critical point.

The vapour-pressures of ether were measured between -20° and 120° by Regnault; though his results agree with ours at certain temperatures, yet there is, on the whole, considerable discrepancy; and, in our opinion, he himself furnishes the explanation. In only one case was the specimen of ether used by him purified from alcohol by repeated shaking with water; and this specimen appears to have been used only in determining the specific heat of the vapour. He points out that after standing much lower vapour-pressures were obtained than with freshly distilled ether; for instance, at 0° his calculated number is 184.39 mms. In the first series, in which the ether had been distilled from calcium chloride, the pressure at -0.08° was 181.7 mms., corresponding to 182.5 mms. at 0°. In the third series the same ether had stood for a year, and was redistilled over lime before experiment. The vapour-pressure at 0° The same quantity of ether was again allowed to stand in sealed was 181.65 mms. flasks, and on redetermining the vapour-pressure after six months it had fallen to 174.9 mms., and after three months more to 171.93 mms. REGNAULT states that the chemical composition was unaltered, and that the alteration was of a physical nature; but Lieben ('Deutsch. Chem. Gesell. Ber.', Jahrg. 4, p. 758) states that pure ether, either alone, or in contact with potash, lime, or sodium, does not change on standing; but that the presence of water, fused sodium chloride, calcium chloride, or anhydrous

copper sulphate induces a change, the liquid exhibiting the iodoform reaction. have little doubt, therefore, that the specimen of ether used by Regnault contained alcohol; and it is known from Professor GUTHRIE's researches that the presence of a minute amount of an impurity has a great influence on vapour-pressures. A further argument in support of this view will be given when we consider the heats of vaporisation. It should here be pointed out, moreover, that REGNAULT'S observations below 0° agree nearly as well with our formula as with his own, whereas our observations are in very close accordance with our calculated results.

II. Compressibilities.—The isothermals of the liquid state, showing decrease in volume with increase of pressure, were, for the purpose of smoothing, plotted on a sheet of curve-paper, and isobars were drawn representing the relations of volume to temperature. The discrepancies of individual observations were thus eliminated, and from the isobars the numbers were retransferred to the isotherms. It will be seen on inspection of the curves (Plate 6) that the smoothed curves agree well with the The Table which follows shows these results, and includes some of the isotherms corresponding to the gaseous state. The volumes are those of 1 gramme.

	223°		3.4	9.45	4.55	7.23	6.75	9.84	4.77	1.01	8.05	5.68	3.69	1.96	0.49	9.198	090.8	2.000	5.990	5.070	4.300	2.720	
			200	<u>წ</u>	9	4	<u>ښ</u>																
	210°	20 Maria - 10 Maria -	:	:	:	:	:	:	:	19.88	16.95	14.57	12.58	10.85	9.327	7.954	6.627	5.241	4.073	3.295	2.929	2.760	
	205°		:	:	:	:	:	:	:	:	16.51	14.13	12.11	10.35	8.804	7.283	5.698	3.860	3.040	2.769	2.639	2.550	
	200°		•	:	:	:	:	•	:	:	10.91	13.62	11.62	808.6	8.135	298.9	3.830	2.848	2.659	2.549	2.470	2.409	
	197°		•	:	:	:	:	:	:	:	15.76	13.38	11.26	9.443	2.638	5.350	2.790	5.604	2.209	2.440	2.390	2.343	
,	195°		9.681	92.17	59.86	43.39	33.51	26.90	22.08	18.40	15.54	13.15	11.04	9.175	7.223	3.020	2.632	2.512	2.440	2.381	2.340	2.302	-
	193.8°		:	:	:	:	33.35	26.72	21.93	18.30	15.38	13.01	10.90	8.962	688.9	2.750	2.570	2.469	2.400	2.349	2.310	2.279	
Temperature.	193°			:	:	:	:				15.33						•	:	:	:	:	:	
Tempe	192°		:	:	:	:	:	26.50	21.73	18.08	15.21	12.70	10.68	8.664	6.252	2.611	2.490	2.410	2.350	2.308	2.276	2.248	
	190°		:	:	20.69	42.72	32.93	26.33	21.57	17.93	15.03	12.58	10.40	8.327	2.652	2.498	2.411	2.350	2.300	2.264	2.237	2.211	
	185°		•	98.68	57.93	41.91	32.31	25.76	20.96	17.39	14.47	11.94	9.59	2.459	2.371	2.317	2.270	2.233	2.201	2.179	2.157	2.139	
	175°		:	87.35	56.12	40.47	30.94	24.53	19.87	16.21	13.11	10.32	2.505	2.169	2.140	2.119	2.099	2.080	2.062	2.049	2.036	2.024	
	150°		:	81.05	51.49	36.52	27.42	21.17	1.9265	1.912	1.9045	1.8995	1.893	:	:	:	:	:	:	:	:	:	
	130°		:	75.72	47.55	33.06	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	
	100°		:	67.58	1.636	1.632	1.6305	1.629	1.627	1.6235	1.621	1.620	1.618	1.616	1.613	1.6105	1.6095	1.608	1.605	1.602	1.600	1.599	
	50°	256.4	1.4770	1.4705	1.4690	1.4675	1.4660	1.4645	1.4635	1.4625	1.4615	1.4610	1.4605	1.4600	1.4600	1.4595	1.4595	1.4590	1.4580	1.4575	1.4570	1.4565	
Pressure.	mms.	1,000	2,000	4,000	6,000	8,000	10,000	12,000	14,000	16,000	18,000	20,000	22,000	24,000	26,000	28,000	30,000	32,000	34,000	36,000	38,000	40,000	

Above the critical point, 193.8°, the compressibility of the substance has been given, where its condition may be assumed to approximate to that of a liquid.

Isothermals at even pressures for 50° and 100°.—As the limits of pressure are so small, it has been thought advisable to give these isothermals separately, in order to save room.

Tempera- ture.	Pressure.	Volume of 1 gramme.	Tempera- ture.	Pressure.	Volume of 1 gramme.	Tempera- ture.	Pressure.	Volume of 1 gramme.
° 50	mms. 900 1000 1100 1200 1276	286·3 256·4 231·7 211·0 196·9	100	mms. 2800 3000 3200 3400 3600 3800	e.cs. 101·1 93·67 87·18 81·45 76·32 71·74	100	mms. 4000 4200 4400 4600 4800 4859	67.58 63.83 60.41 57.26 54.32 53.50

III. From these results the curve, which we propose to call the orthobaric curve, was constructed. It represents the relations between the volumes of a gramme of liquid and temperatures, at pressures equal to the vapour-pressures. These were obtained by direct reading, sometimes, however, at pressures slightly higher than the vapour-pressures; and also from the points of intersection of the curves representing compressibility, with the horizontal lines, indicating vapour-pressure. read from the smoothed curve, representing the latter, and also the corresponding specific gravities, are given in the following Table:—

Tempera- ture.	Volume.	Specific gravity.	Tempera- ture.	Volume.	Specific gravity.	Tempera- ture.	Volume.	Specific gravity.
0	THE CONTRACT OF STREET, STREET	Security and the property of the second section of	0			0		
0	1.3583	0.7362	95	1.617	0.6184	155	1.976	0.5061
40	1.4505	0.6894	100	1.638	0.6105	160	2.021	0.4947
45	1.4650	0.6826	105	1.660	0.6024	165	2.027	0.4817
50	1.4785	0.6764	110	1.684	0.5942	170	2.147	0.4658
55	1.4900	0.6711	115	1.708	0.5855	175	2.238	0.4468
60	1.5020	0.6658	120	1.735	0.5764	180	2.343	0.4268
65	1.5175	0.6590	125	1.763	0.5672	185	2.489	0.4018
70	1.531	0.6532	130	1.792	0.5580	190	2.730	0.3663
75	1.550	0.6452	135	1.823	0.5485	192	2.900	0.3448
80	1.562	0.6402	140	1.857	0.5385	193	3.030	0.3300
85	1.580	0.6329	145	1.893	0.5283			l
90	1.600	0.6250	150	1.931	0.5179			

Orthobaric Volumes of 1 gramme of Vapour.—The following Table gives the volumes of 1 gramme of the saturated vapour at even temperatures, with the corresponding specific gravities and vapour-densities.

Temperature.	Volume of 1 gramme.	Specific gravity.	Vapour- density.	Temperature.	Volume of 1 gramme.	Specific gravity.	Vapour- density.
0	c.cs.			0	c.cs.		
0	$1209 \cdot 1$	0.000827	37.95	105	47.62	0.02100	45.35
5	973.6	0.001027	38.00	110	42.57	0.02349	46.05
10	791.1	0.001264	38.10	115	38.02	0.02630	46.95
15	646.6	0.001547	38.35	120	34.09	0.02934	47.8
20	534.7	0.001870	38.5	125	31.30	0.03195	48.75
25	436.2	0.002293	38.6	130	27.49	0.03638	49.75
30	373.6	0.002677	38.9	135	24.73	0.04044	50.85
35	316.2	0.003163	39.05	140	22.28	0.04488	52.0
40	268.0	0.003731	39.4	145	20.03	0.04992	53.4
45	229.5	0.004358	39.6	150	18.01	0.05551	54.95
50	196.9	0.005079	39.95	155	16.18	0.06179	56.7
55	170.3	0.005886	40.2	160	14.47	0.06911	58.9
60	147.7	0.006771	40.5	165	12.90	0.07754	61.5
65	128.4	0.007790	41.0	170	11.45	0.08731	64.55
70	112.1	0.008920	41.45	175	10.12	0.09879	68.2
75	98.33	0.01017	41.9	180	8.815	0.1135	73.25
80	86.60	0.01155	42.35	185	7.579	0.1320	79.75
85	76.56	0.01306	42.8	190	6.172	0.1620	91.45
90	67.70	0.01477	43.4	192	5.476	0.1826	100.2
95	60· 14	0.01663	43.95	193	4.970	0.2012	108.7
100	53.55	0.01867	44·55				

The curves showing the relations given in the preceding Tables between specific gravity and temperature of liquid and vapour are represented in Plate 10, and the volumes of 1 gramme of liquid and vapour are shown in Plate 9, but mapped against pressure.

Densities of Unsaturated Vapour at even Pressures.—(H = 1.)

Pressures. 50° 25° 20° 25° 20° 25° 20° 25° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20	100° 44440	47.35	050 050 050 050 050 050 050 050	175° 000000000000000000000000000000000000	185°	190° 70° 70° 70° 70° 70° 70° 70° 70° 70° 70°	Пешре 192° 477°5 477°5 661°5 68°5 6	Temperatures. 922 1938 9245 7.55 47.4 6.995 6.99 6.99 6.99 6.99 6.99 6.99 6.9	193°8 8°8 447.25 60.50 60.50 81.00	195°	7.01 5.12.5 5.44.65 7.35.55 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7.35 7	869.94.45.55.95.95.95.95.95.95.95.95.95.95.95.95	268 5.00 5	447777600 00	223 37.9 37.9 38.7 38.7 39.8 3
	: : : : :	:::::	• • • • •	• • • • • •	• • • • •	:::::		: : : : :	: : : : :	: : : :	• • • • •	• • • • •		4.801	74.55 82.5 94.4 104.2

These results are graphically shown on Plate 7. The curves were smoothed by constructing others showing the relations between temperature and pressure at equal vapour-densities, and then transferring back to the original sheet of curve paper. can be judged by the position of the circles how nearly the observations agree with the smoothed curves.

IV. Heats of Vaporisation.—From the thermodynamic equation

$$\frac{\mathbf{L}}{s_1 - s_2} = \frac{dp}{dt} \frac{t}{\mathbf{J}},$$

the heats of vaporisation at definite intervals of temperature were calculated. values of the expression dp/dt were calculated in the following manner. By means of the formula $\log p = a + ba^t + c\beta^t$, the vapour-pressures at one-tenth of a degree above and below the definite temperature were calculated, and the difference was multiplied by 5 to obtain the values for 1°. This method gives results probably as nearly correct as it is possible to obtain. The pressures were reduced to grammes per square centimetre, and the value of J was taken as 42,500.

Temper	rature.	$rac{dp}{dt}$	$rac{dp}{dt}$	$rac{dp}{dt} rac{t}{f J}$	s_1-s_2	L
C.	Abs.	in mms.	in grammes.	The state of the s		
ő	$2\overset{\circ}{7}3$	8.843	12.023	0.07723	1207.7	93.27
10	283	12.695	17.26	0.11493	789.8	90.77
20	293	17.585	23.91	0.16483	533.3	87.90
30	303	23.720	32.25	0.22992	372.2	85.60
40	313	31.160	42.37	0.31200	266.6	83.18
50	323	40.095	54.51	0.41430	195.4	80.95
60	333	50.620	68.82	0.53924	146.2	78.84
70	343	62.840	85.44	0.68932	110.58	76.42
80	353	77.005	104.70	0.86958	85.04	73.95
90	363	93.010	123.46	1.0801	66.10	71.39
100	373	110.48	150.21	1.3183	51.85	68.35
110	383	131·4 8	178.76	1.6113	40.95	65.98
120	393	153.95	209.3	1.9355	32.36	62.63
130	403	178.61	242.8	2.3027	25.67	59.11
140	413	205.8	279.8	2.7191	20.42	55.52
150	423	234.9	319.4	3.1786	16.10	51.18
160	433	266.65	362.5	3.6936	12.45	45.99
170	443	300.4	408.4	4.2572	9.324	39.69
180	453	336.4	457.4	4.8751	6.478	31.58
185	458	363.0	493.5	5.3186	5.035	26.78
190	463	407.0	553.4	6.0282	3.467	20.90
192	465	446.0	606.4	6.6344	2.578	17.10
193	466	472 ·0	641.7	7.0364	1.942	13.67

The heats of vaporisation have been determined by other observers; Brix ('Liebig's Annalen,' vol. 44, 1842, p. 169) gives determinations of the heats of vaporisation of water, alcohol, and ether. Translating Réaumur into Centigrade degrees, that of water becomes 539.6 calories; of alcohol, 214.25 calories; and of ether, 89.96 calories. Determinations were next made by Andrews ('Chem. Soc. Journ., vol. 1, 1849, p. 27), who found 90.5 calories. The sample of ether he employed

boiled at 34.9° at 752 mms. pressure. FAVRE and SILBERMANN found 91.11 calories ('Annales de Chimie,' vol. 37, 1853, p. 465). REGNAULT ('Mémoires de l'Académie,' vol. 26, p. 881) gives a formula for calculating the total heat of vaporisation from 0°; it is

$$\lambda = a + bt + ct^2,$$

where a = 94, b = 0.45, and c = -0.00055556.

From this formula the heat of vaporisation at $0^{\circ} = 94$ calories, but for higher temperatures the specific heat of ether is required, for calculating which he gives the formula

$$Q = at + bt^2,$$

where Q is the total quantity of heat required to raise 1 grm. of ether from 0° to t; $\log a = \overline{1.7234538}$; and $\log b = \overline{4.4711026}$. Four experiments were made, of which the results of only three were employed in calculating the constants, although the fourth experiment was moderately concordant with the others; the range was only from -30° to $+32^{\circ}$. Taking into consideration the small number of experiments, and the not very close agreement between the result of the second experiment and the value calculated from the formula (calculated, Q = 15.821; observed, Q = 15.930), it is doubtful whether these constants would hold good for temperatures much higher than 35°. Regnault made two series of experiments, of which there were seven observations in the first and four in the second, on the heats of vaporisation of ether. The ether employed in the first series was purified by the ordinary methods, and distilled from time to time with lime to remove acids and water. In the second series, including experiments at very low pressures, the ether was purified "with the greatest care," and kept in a stoppered flask. Nevertheless, on distillation, a quantity of less volatile liquid remained behind, having, as he states, the percentage composition This modification, according to him, is absent from ether recently distilled, but forms after some months (see remarks on p. 82). In the second series the weight of the residual liquid in the calorimeter was always subtracted from the total weight, the liquid having been distilled from the calorimeter. The following Table gives the individual results of Regnault's experiments, and also the total heats at the same temperatures, calculated by means of his formula. The first four experiments were made with the carefully purified ether.

Temperature.	Total	heat.	Temperature.	Total	heat.
Temperature.	Observed.	Calculated.	Temperature.	Observed.	Calculated.
$\begin{array}{c} -\ 3^{\circ}7 \\ +\ 7^{\circ}51 \\ 12^{\circ}9 \\ 15^{\circ}5 \\ 17^{\circ}15 \\ 21^{\circ}95 \end{array}$	$\begin{array}{c} 92 \cdot 235 \\ 95 \cdot 370 \\ 97 \cdot 282 \\ 98 \cdot 801 \\ 101 \cdot 278 \\ 104 \cdot 366 \end{array}$	92·343 97·35 99·72 100·84 101·56	34.83 90.05 93.85 108.80 120.90	109·117 128·900 130·880 138·196 140·781	109·0 136·38

From some of these the heats of vaporisation were calculated by help of the formula given for calculating specific heats.

Heats of Vaporisation.

Temperature.	Observed.	Calculated.	R. and Y.	Temperature.	Observed.	Calculated.	R. and Y.
$\begin{array}{c} -3.7 \\ +7.51 \\ 12.9 \\ 15.5 \end{array}$	94·188 91·38 90·41 90·53	94·296 93·36 92·85 92·57	94·4 91·3 89·9 89·25	17°15 34·83 120·9	92·12 90·333 72·49	92·40 90·21	88·8 84·5 62·5

It is noticeable that the agreement between REGNAULT'S observed and calculated numbers is much less good at low than at high temperatures, with the exception of the first at -3.7° ; and, as the four first determinations were made with the purest sample, more stress has been laid by REGNAULT on his observations with the less pure than with the purer ether.

The heats of vaporisation thus calculated are widely different from the results obtained by us, with the single exception of that at the lowest temperature; but it is also remarkable that the individual experiments with the purer substance exhibit much closer concordance with our results.

As the results about the temperature 35° by all observers exhibit fairly close agreement with the observations of REGNAULT, but differ widely from our calculated values, it appeared desirable to submit them to proof by translating Regnault's results into vapour-densities; and for this purpose the values of dp/dt were calculated by means of BIOT'S formula, using REGNAULT'S constants. By thus doing, the work is entirely The results are given in the following Table:—

Temperature.	$rac{dp}{dt}$	$\frac{dp}{dt}$	$rac{dp}{dt} rac{t}{ extsf{J}}$	L	$s_1 - s_2$	s_1	Vapour- density.
0 10 20 30 35	mms. 8 44 12 22 17 175 23 47 27 155	grammes. 11·47 16·615 23·35 31·91 36·92	0·07388 0·11063 0·16099 0·22749 0·26756	94·0 93·12 92·08 90·86 90·18	1272·4 841·7 572·0 399·4 377·05	1273·8 843·1 573·4 400·8 338·5	36·12 36·37 36·69 37·01 37·15

As the minimum value of the vapour-density of ether is 37, the first three results are impossible; and, on consulting the Table on p. 64, giving the results of our measurements at 12.9°, and Table 58, p. 80, it will be seen that the density of the saturated vapour rises to 38.25 at 12.9°, and 39.95 at 50°. At 35° the vapour-density read from the curve is 39.05.

Our results also receive confirmation from a number of experiments by Horstmann ('Liebig's Annalen,' Suppl. 6, 1868, p. 63), which, although not very concordant with each other, yet amply suffice to prove that the vapour-density is not constant, and that, therefore, p.v. is variable.

It follows from the Table already given that, if REGNAULT'S results are correct, the thermo-dynamical formula does not always hold; the same discordance was noticed in his observations with alcohol.

It is possible, assuming the impurity in Regnault's ether to have been alcohol, which is not unlikely, inasmuch as no mention is made of the sample of ether having been purified by washing with water, to calculate the percentage which must have been present in order to raise the heat of vaporisation from 84.5, calculated by us, to 90.2, calculated from Regnault's formulæ; it is 4.4 per cent., and an analysis of such a mixture would give 64.3 per cent. of carbon, instead of 64.86 per cent. contained in pure ether. This does not, however, account for the composition of the high-boiling residue, which, if alcohol, should have contained 52.17 per cent. of carbon.

From these experiments it is noticeable that with ether, although the density of the saturated vapour is very abnormal, even more so than with alcohol, yet there is no tendency towards a rise with decrease of temperature. It therefore seems probable that, for the same reasons which were stated in the memoir on alcohol, combination of gaseous molecules to form complex molecules does not take place.

It is impossible to state accurately the temperature, pressure, and volume of any substance at the critical point; but the following numbers may be regarded as closely approximate for ether:—

Temperature . . . 194°.

Pressure 27,060 mms. = 35.61 atmospheres.

Volume . . , probably 4.06 cub, centims. for 1 gramme.

APPENDIX.

Received February 2, 1887.

Since the foregoing memoir was read, it appeared to us of importance, in consequence of some theoretical deductions, a short account of which has been communicated to the Society by Professor Stokes, to make fresh determinations of the relations between volume, temperature, and pressure of ether at higher temperatures and greater pressures than we had formerly employed.

For these experiments a fresh stock of ether was prepared; the volume tube was new; and the air-gauges were refilled. The weight was not determined directly, but was ascertained by comparison with our previous results at 175°, 185°, and 195°. It was 0.055406 gramme.

The temperature 175° was maintained by jacketing the experimental tube with aniline; methyl salicylate was used for the temperatures 185°, 195°, and 220°; and bromonaphthalene for 250° and 280°. It should be mentioned that fresh samples of aniline and methyl salicylate, carefully fractionated from impurities, were employed.

Temperature, 175°.

Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.
c.cs. 22·608 21·254 19·901 18·552	mms. 12,729 13,304 13,960 14,673	c.cs. 17·199 16·524 15·847 14·496	mms. 15,392 15,822 16,207 17,163	0.08 13·154 11·821 10·493	mms. 17,994 18,943 19,930

Vapour-pressure. P = 20,180; 20,271; 20,284; 20,277; 20,321. Mean, 20,271.

TEMPERATURE, 185°.

Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.
c.cs. 22·615 19·907 17·204 14·500	mms. 13,248 14,549 16,061 17,948	0.cs. 13·158 11·825 10·496 9·181	mms. 18,988 20,115 21,346 22,437	c.cs. 8·530 7·880	mms. 22,956 23,451

Vapour-pressure. P = 23,750; 23,760; 23,774; 23,770. Mean, 23,763.

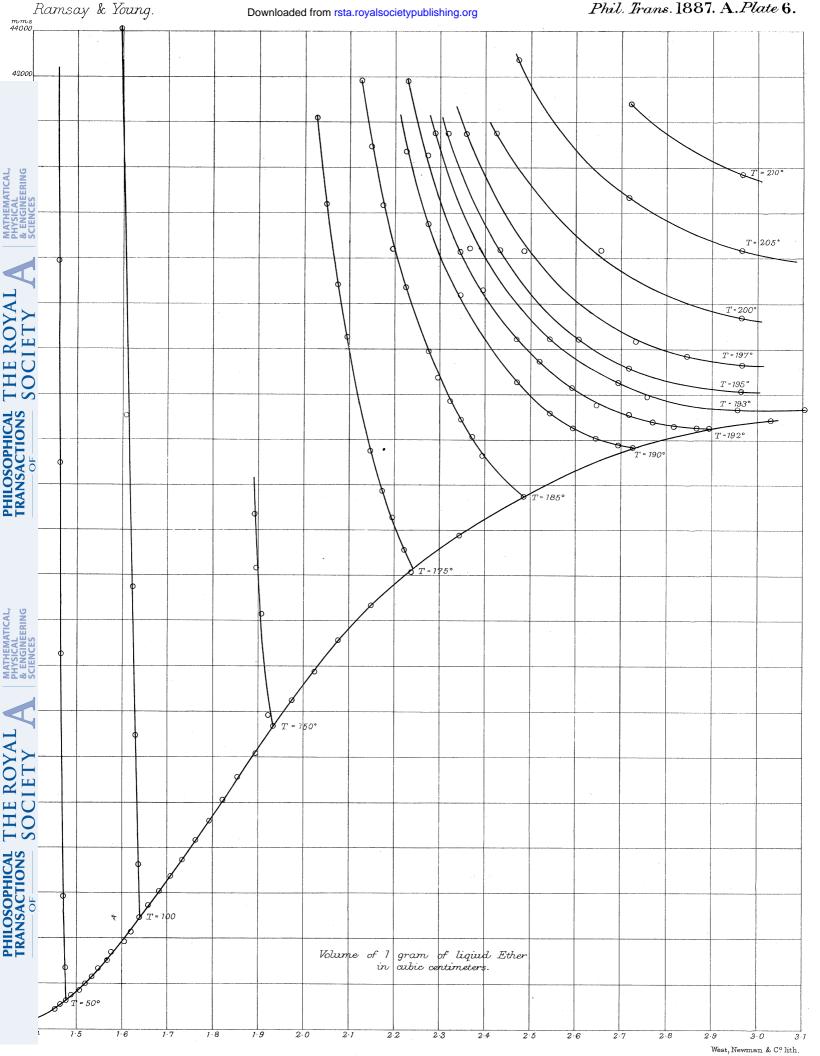
The mean of previous determinations of vapour-pressure at 175° is 20,189; and at 185° 23,623. Considering that the samples of ether, aniline, and methyl salicylate were different, and that the gauges were refilled, the agreement is satisfactory.

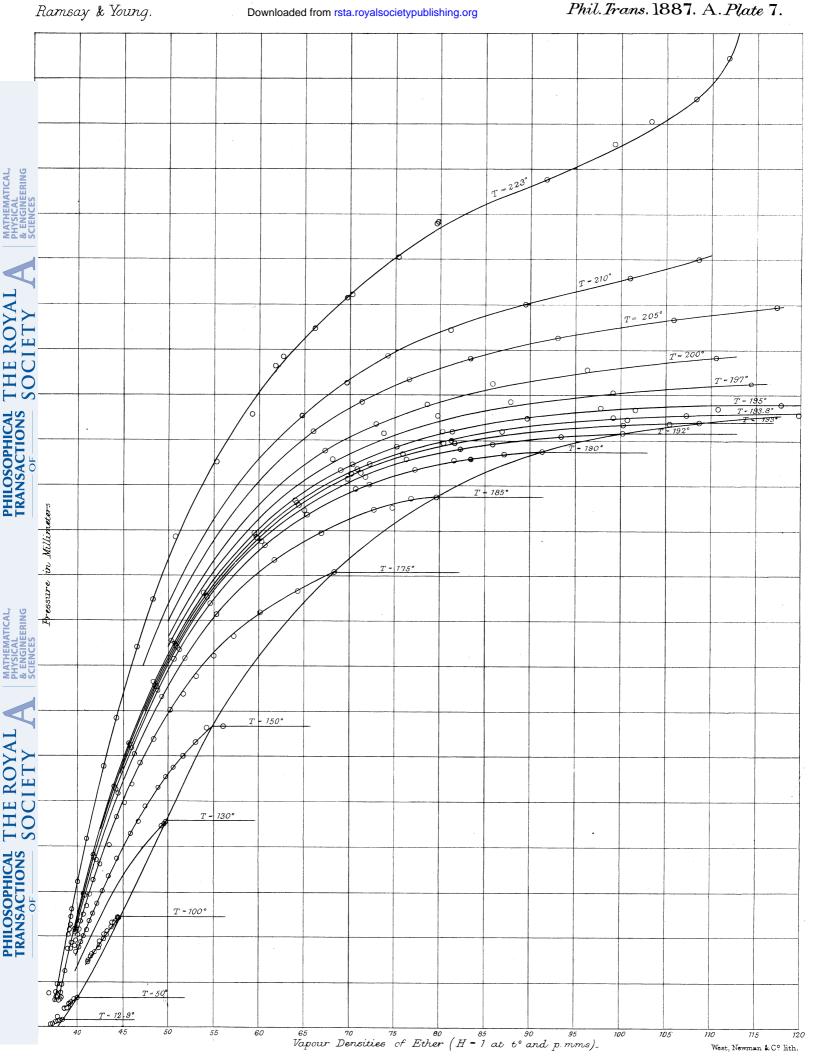
Temperature, 195°.

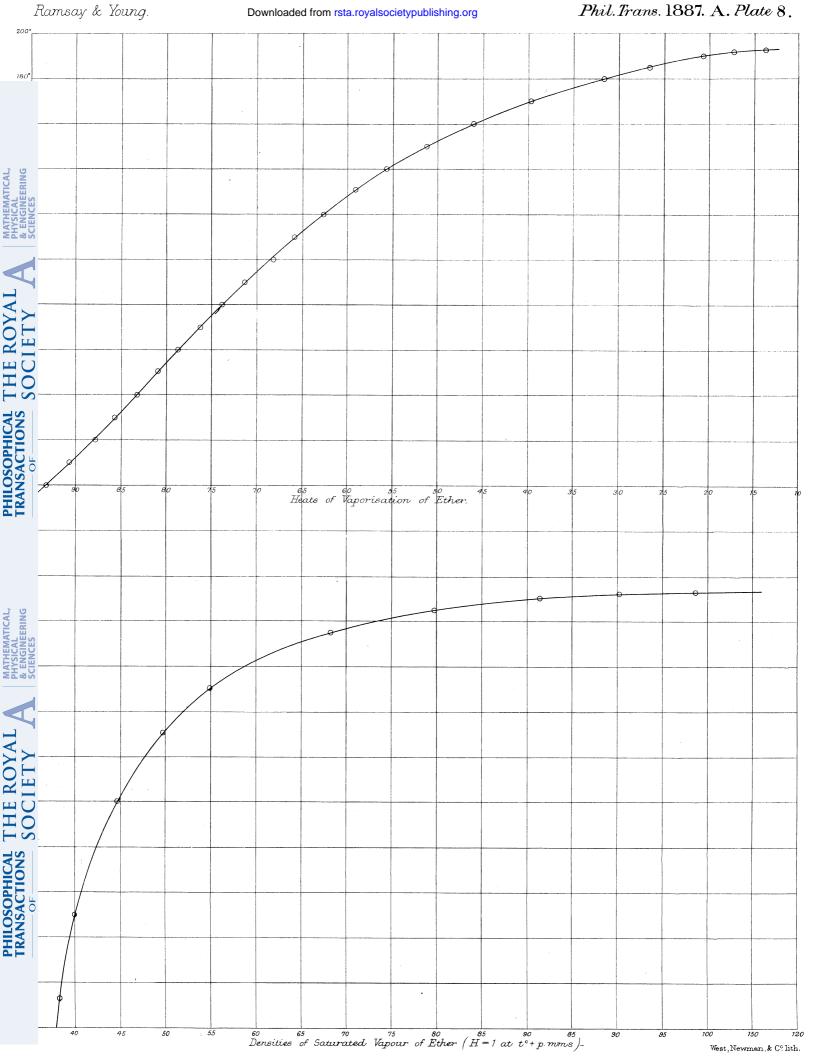
Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.
22·620 19·911 17·207 14·503 13·161 11·827	mms. 13,723 15,102 16,752 18,793 19,931 21,169	c.cs. 10·498 9·183 7·881 7·237 6·593 5·950	mms. 22,503 23,904 25,325 25,988 26,529 27,039	c.cs. 5·308 4·665 4·025 3·386 2·748	mms. 27,373 27,599 27,704 27,735 28,846

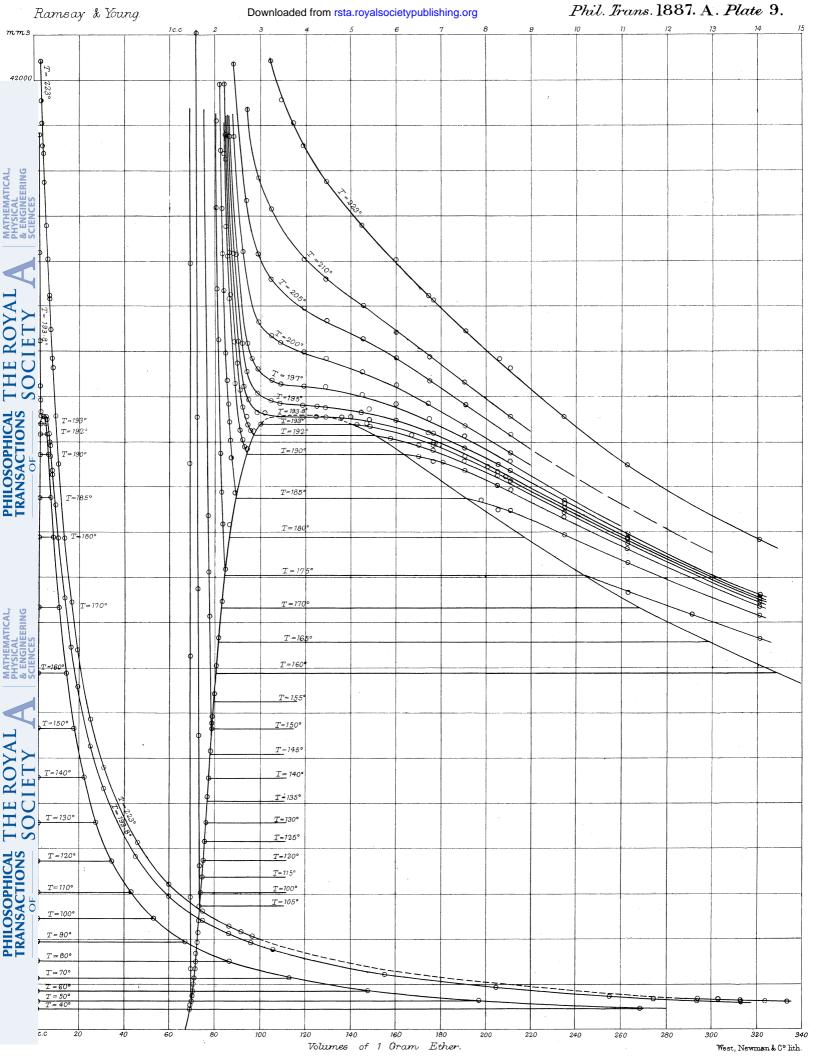
Temperature, 220°.

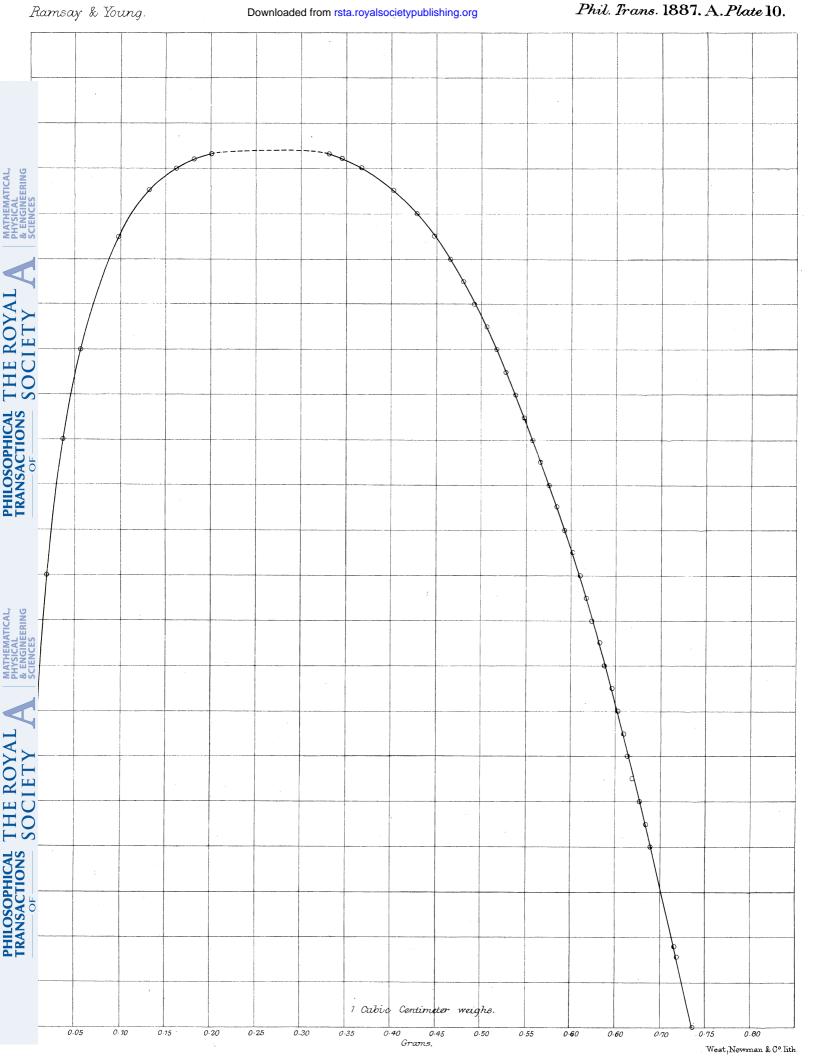
Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.
22·635 19·925 17·219 14·513 11·836 10·505	mms. 14,886 16,451 18,357 20,772 23,763 25,542	6.cs. 9·189 7·887 6·598 5·954 5·311 4·669	mms. 27,584 29,708 32,123 33,325 34,715 36,201	c.cs. 4·028 3·389 3·069 2·749 2·622 2·558	mms. 37,740 40,278 42,630 46,921 50,342 52,753


Temperature, 250°. Pressure of bromonaphthalene vapour, 386.35 mms.


Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.
c.cs. 22·651 19·938 17·231 14·523 11·844	mms. 16,223 18,058 20,269 23,110 26,789	c.es, 10·513 9·195 7·892 6·602 5·958	mms. 29,074 31,741 34,815 38,513 40,664	c.cs. 5·315 4·672 4·351 4·031 3·711	mms. 43,259 46,155 47,884 50,129 52,599


Temperature, 280·35°. Pressure of bromonaphthalene vapour, 758·2 mms.


Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.	Volume of 1 gramme.	Pressure.
c.cs. 22·669 19·954 17·245 14·535 11·853	mms. 17,806 19,881 22,499 25,834 30,430	7:253 6:607	mms. 33,349 36,777 41,084 43,537 46,552	c.cs. 5·963 5·642 5·319	mms. 49,552 51,598 53,841


At 175° and at 280° the readings of pressure were double, one set being made with rising and the other with falling pressures; the means are given,

